
lnt. J Heat Mass Trans!'er Vol 33. No 9, pp. 1839-lS47, 1990 tY017-9310 ~) $3 00+0 .00  
Printed in Great Britain , 10~) Pergamon Pres~ pie 
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Abstract--Transient crystal growth from a vapour phase in micro-gravity conditions is studied through a 
one-dimensional model problem. This model consists of solving by means of the PISO algorithm the full 
continuity, momentum, energy and transport equation of the specie which reacts at the interface in order 
to explore the transient between two states of equilibrium of a crystal with its vapour at two different 
temperatures. Solution of the governing equations is also obtained using a matched asymptotic expansion 
technique and comparison with the numerical results of Part I concerning the evolution on the acoustic 

time is a good validation of the numerical method and scaling laws. 

1. INTRODUCTION 

DUE To the strong decrease of buoyant convection, 
second-order forces may drive significant fluid flows 
in micro-gravity conditions. In liquids, the Marangoni 
effect which has its origin in the interface force caused 
by a surface tension gradient is a well-known example 
of second-order motion which has been extensively 
studied. In gases, the compressibility may generate 
motion even in the absence of  buoyant forces. It is 
well known, for example, that when heat is added to 
the wall o f  a closed vessel, a mot ion is generated in 
the fluid in the form of acoustic waves, and depending 
on the time rate and the amount  of  heat addition you 
can even generate shock waves [1,2]. 

The physical problem under study is the following : 
a crystal, located on the wall of  a one-dimensional 
slot filled with a binary perfect gas mixture is in equi- 
librium with this mixture one component  of  which is 
the gaseous phase of  the crystal. The system is in quasi 
zero-gravity conditions. For  t = 0 the crystal is heated 
until it reaches a new temperature ; as the slot is closed 
and insulated, a new thermodynamic equilibrium is 
reached and the aim of this paper is to explore the 
transient between these two equilibria. 

In the first part, a slow heating law is considered, 
that is to say the temperature of  the crystal is raised 
on the long diffusive time scale. The solutioln of  the 
Navier-Stokes equations is looked for under the form 
of an asymptotic expansion written for the short 
acoustic time scale. In a similar way as in ref. [3], the 
matched asymptotic expansion technique is used to 
match the initial boundary layer with the core flow. 
Then the multiple scale expansion technique is used 
to obtain the equations which describe the evolution 
on the long diffusive time scale. 

The second part is the numerical solution of  the 
problem by the PISO algorithm [4]. After the principle 

of the method is given, solution for the same boundary 

conditions as in Part I is obtained for comparison of 
the results. A typical evolution is then computed on 
both acoustic and diffusive time scales in the boundary 
layer and core flow. 

2. THE ASYMPTOTIC ANALYSIS 

2. l. The Physical Situation 
The physical problem concerns a confined, two- 

component  perfect gas mixture contained in a one- 
dimensional slot of  width L situated in micro-gravity 
conditions. At the end located at x = 0 a cr~stal is at 
the thermodynamic equilibrium at the initial tem- 
perature and pressure To and P0. The other end, 
x = 1, is closed and insulated. For t = 0 the tem- 
perature at x = 0 is raised on a long time scale until 
it reaches a new temperature ; after a transient, a new 
equilibrium of the crystal with its vapour is reached 
for which the thermodynamic properties are constant 
and the fluid is at rest. This problem is an extension 
of  the one studied in ref. [3] for which there is no 
growth interface. 

2.2. The Governing Equations 
The governing equations are the Navier-Stokes 

equations coupled with the diffusion equation of  the 
specie which reacts at the interface at x = 0. If the 
length x' ,  velocity u' and time are respectively reported 
to the length L of  the medium, the sound velocity C]~ 
and the acoustic time t'~ = L/C'o while the temperature 
T', the pressure P" and the specific mass are nor- 
malized with respect to their initial values, the govern- 
ing equations can be written as follows : 

continuity 

p,+(pu), = 0 ;  ( l )  
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NOMENCLATURE 

C~ sound velocity in the initial reference 
state 

D diffusion coefficient 
L width of  the slot 
Le Lewis number  
M~ molar mass of specie x 
P pressure 
Pr Prandtl  number  
t~ acoustic characteristic time 
t~ diffusive characteristic time 
t time normalized with respect to the 

acoustic characteristic time 
T temperature 
To reference initial temperature 
W weight fraction for specie A 
W0 initial value for the weight fraction of A 
x space variable 
z inner space variable. 

Greek symbols 
:t- ~ molar mass of the mixture 

boundary layer thickness 
small parameter 

x thermal diffusivity 
p specific mass of the bulk gaseous phase 
P0 initial value of the specific mass 
p~ equilibrium value of the partial specific 

mass of A at the interface 
z time normalized with respect to the 

diffusive characteristic time. 

Superscripts and subscripts 
( ) '  dimensional variable 
( - )  outer variable 
( - )  inner variable 
( )A property related to specie A 

momentum 

pu, + puux = -7-IP.~+~ux.~ ; 

energy 

P ( T , + u T ~ ) = - - P u ~  
7 - 1  " 

species 

where 
given by 

w, + u Pr Ze wx = ,Or L----~ w ~  

W is the weight fraction and the pressure is 

P = p~T 

where 

:t' MB -- MA 
~ = - ; - ;  ~" W + ~ = k t W + k : .  

~o MAMs 

M A and MB are respectively the molar masses of the 
reacting component  at the interface and that of  the 
inert one B. e is the ratio Pr t;/t'd of  the acoustic 
time t ;  to the diffusion time t~ = L2/K where x is the 
thermal diffusivity. 7 is the ratio of specific heats. 

2.2.1. Boundary conditions 
2.2.1.1. Boundary conditions at x = O. 

T =  H(z) = H(et) = l+H'(O)et+O(e 2) (5) 

where z is the time normalized with respect to the 
diffusion time 

Equation (5) means that the heating of the crystal 

occurs on the long diffusive scale. Typically, for air at 
(2) STP and L = 0.1 m the following numerical values 

hold : 

t ~ , = 3 x l 0 - 4 s ;  C L = 3 x l 0 2 m s  -I. ,  

t~ = 6.29 x 102 s. 

Now, if the phase change reaction which takes place 
(3) at x = 0 is supposed to be extremely rapid compared 

to diffusion in the bulk, then the mass transfer at the 
interface is diffusion limited and the weight fraction 
at this interface is thus fixed to its equilibrium value 

(4) [5] 

W~ ( T) 
P'A=P~°(T) or W =  at x = 0  

P 

where W~(T) is the equilibrium weight fraction when 
the partial specific mass of  A is reported to the initial 
specific mass p~. 

Taking into account equation (5), the equilibrium 
weight fraction at the interface may be expanded as 

p W =  Wo+sG'( l )H'(O)t+O(e ~) (6) 

where 

~W 
G' ( I )  = ~ -  r=t 

and the boundary condit ion for the velocity at x -- 0 
is deduced from the mass balance [5] 

wx 
U = P r L e  W at x = 0 .  (7) 

P 

2.2.1.2. Boundary conditions at x = 1. The slot is 
closed at x = 1 and insulated, so that 
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FIG. 1. Asymptotic analysis on the acoustic time scale. 

u = 0 "  T , = 0 ,  W ~ = 0 .  

2.2.1.3. Initial conditions. 

p =  T = P =  1, u = O ,  W =  Wo 

(8) 

at t = 0 .  

(s3 

2.3. Asymptotic Solution on the Acoustic Time Scale 
The main scaling and domain defined in this analy- 

sis are summarized on Fig. 1. 

2.3.1. Initial boundary layer solution (inner solution) 
2.3.1.1. The solution. From equation (4) and bound- 

ary conditions (5) it is clear that the asymptotic expan- 
sion 

T =  1 +e,T(x , t )+o(e  0 

is not regular in the neighbourhood of x = 0 and 
that ¢ is a singular perturbation parameter for x = 0. 
According to the matched asymptotic expansion tech- 
nique, an inner variable defined by 

X 
z -  6 ( s ) ~ 0  as e- - ,0  !9) 

6(e) " 

must be introduced and the solution seeked under the 
form of another asymptotic expansion called the inner 
expansion and constructed for the function 

T(az, t) = iF(z, t) 

that is to say 

T =  I +eT(z , t )+o(e) .  (10) 

The function 6(a) is given by the least degeneracy 
principle which matches the transient and diffusion 
terms in equation (4) written for the function iF(z, t) 
and for the inner variable z. This gives obviously 

~(e) = ,/~. (l 1) 

Physically this means that the heat diffusion has no 
time to occur on the short acoustic time scale except 
in a very thin layer of thickness e just in front of the 
heated crystal. In the same way a species diffusion 
boundary layer is formed. 

The scaling for the other variables in this layer, that 
is to say the definition of  the compatible asymptotic 
sequence for the inner expansion, is given by matching 

the linear terms [3] in each equation when p. P and u 
are expanded as 

p = 1 +e=fi+o(~ ~) (12) 

P = 1 +e~/~+o(d ~) (13) 

u = g~i+o(e ~) (14) 

which gives 

: ~ = 1 :  / t = 2  and ~z=2. (15) 

Considering equation (6) the scaling for 14" in the 
boundary layer is 

W = Wo +eff;(z. t) + o(e). (16) 

Substituting equations (16) and (11) in boundary con- 
dition (7) for u gives 

~(z = 0, t) = 00:3 -') 

which means that the mass transport is of the same 
order as the thermal effects in the compressible bound- 
ary layer. 

Substituting equations (10)-(16) for I ' . .v.  ~, / '  
and W in equations (1)-(4) the following governing 
equations are obtained for the first-order approxi- 
mation in the boundary layer: 

fi,+t~: = 0 ( 1 7 )  

kl W o + k :  

iF, = - - ( 7 - - 1 ) 5 : + ?  Pr- '  iF_.: (19) 

~, = - ' ; -~P,+~7::  ( 2 0 )  

if', = (Pr Le) - ~ IV:- (21) 

with boundary conditions at z = 0 

T = H'(O)t (22) 

i f '= G ' (1 )H ' (O) t -  Wofi (23) 

i if. 
g - (24) 

Pr Le W o -  1 

and matching conditions for z -+ ~ 

iF ~ o (25) 

[,P--+ O. (26) 

The corresponding initial conditions are 

~ = f i = T = ~ 7 = 0 ,  ~ ? = 0  at t = 0 .  (27) 

The solution of equations (17)-(21) together with 
conditions (22)-(28) is expressed by 

ff/(z,t) = 4 tp t i2er f c (Z ' /~4  Le) )  (28) 
\ =-V t / 

where 

H'(0)(I  + ~G'(1)) 
= G'(1)H'(O) - Wo 

W o - I 
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, [ , w / ( P r ) ' ~  J_ :F(z,t) = C, Ti- erfc ~ )  . C'~ FY(z,t). 

Here 

(29) 

k !  
¢ -  

kl W°+k2 
l 7 - 1  

C'~ = - -  ~, C, = 4 [ H ' ( 0 ) - 4 C ' d  
L e -  1 7 

f(z,t) = -Ctti2erfc(Zx/(Pr)~ 
k 2x/t / 

- -  (C', + ¢) l~(z, t) (30)  

I 

' Ct v ' (z ' t )=x/ t{~En-t /2- ier fc(Z~/(Pr)~i \~/ . j  

II 
A 

2(C't + O  [ x/ (z~/(LePr)il  
+ ( L e P r )  n - J " : - i e r f c  " - -  " \ 2v't /_1 

Il l  

2~J 

- 4rc(Wo---O4(Le Pr)} (31) 

. .  f ( 4 P r - 3 )  
/~(z, t ) =  t % ( t ) + 7 1 ~ [ C t e r f c ( ~  ) 

+ O ~ e r f c ( Z x / ( P r  Le)~] 
\ ~ )J 

z (C, (CI+¢) ~/(PrLe) )} 
x/~t) 4-fir x/(pr Le~ O W o -  1 O (32) 

in which P~(t) could be determined by a higher order 
approximation. 

2.3.1.2. The physics. In equation (31), which gives 
the velocity in the boundary layer, the following terms 
can be identified : 

term I represents the thermal expansion due to 
boundary heating ; 

term II represents the solutal expansion or con- 
traction (depending on ~, that is to say on the molar 
mass difference) ; 

term III represents the mass flux at x = 0 due to the 
heterogeneous reaction. 

At the edge of the boundary layer, the velocity a is 

2 c ,  2 ( c i  +¢)  
= )irn ~(z, t) = x/-~x Pr) + x/(n Le Pr) and 

x/(rt Le er)(Wo24 _ l ) )  x/t" (33) 

The piston effect, already mentioned in ref. [3] is 
found again. The first term in equation (33) is the 
contribution of the thermal expansion, the second 
term is the contribution of the solutal expansion and 

the third term is the mass transfer at the wall. The 
boundary layer thickness increases as the square root 
of time. 

In boundary condition (23) for the weight fraction 
~V(z, t) at z = 0, the first term represents the con- 
tribution of the increase in equilibrium partial specific 
mass PA due to the increase in crystal temperature 
while the second term represents the contribution of 
the total specific mass. In other words, the first term 
only depends on thermodynamics (through the crystal 
temperature) and the second term depends on 
dynamical effects; this last term is the expression of 
the coupling between mechanical stresses and crystal 
growth, that is, possible mass transfer at the interface 
without any temperature variations at the surface. 

As a matter of fact, the interface velocity given by 
boundary condition (7) for u and solution (28) for 
l~(z,t) is given as 

11-1 11-2 
1 ~ 

, ~ , H'(0) [1 + ~a ' ( l ) ]  
5(0, t) = 2[G'(I)H'(O)-W o ~Wo--i ) 

,/t 
× 

~/Oz Le Pr)(l  - W0)' 

Term I is the contribution of the temperature depen- 
dent equilibrium partial specific mass p~x at the inter- 
face. Term II is the contribution of the total specific 
mass gradient at the interface Px which undergoes 
variations under thermal (II-1) and solutal effects (II- 
2). Expression (34) for t~ also points out that under 
linear increase of  the interface temperature, the 
growth (or etching) varies as the square root of time. 

2.3.2. The core solution (outer solution) 
Expression (33) for the velocity at the edge of the 

initial boundary layer and the matching rule shows 
that 

lim u(x, t) = lim 5(z, t) = e3':~cx/ t 

which means that a mechanical perturbation of the 
order of magnitude O(e 3'z) acts on the bulk. On the 
other hand, taking form (32) lim,_~P(z,t), it 
becomes 

l i m P ( z , t ) = -  7_~_( C4~Pr ) (C'~+~) 
:-"~ x/(nt) + x/(Pr Le-~---S ~k 

-- x/(Pr Le~( W o -- 1) = x'z = e- ":x'x 

!ira P(z, t) = 1 + e -  ~/:x'x+ O(e) 

matching conditions lead to 

lim P(x, t) = lim P(z, t) = 1 +ea/2~'x+O(e) 

which means that the appropriate asymptotic expan- 
sions for the outer solution are 
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T(x, t) = 1 +~3 zT"(x, t )+o(g  3:2) 

p(x, t) = 1 +g3 2fi(x, t) +o(g 3'') 

P(x, t) = 1 + e 3 2/5(x, t) + o(e 3':) 

W(x, t) = 1 -}- C3 2 ~/~'(X, t) +00;  3':) 

U(X, t) = ~3 :a(x, t) +o(e3 :). 

Substituting equations (34)-(38) in equations (1)-(41, 
the following governing equations are obtained for 
the outer solution of O(e 3/2) : 

fi~ + ti~ = 0 (39) 

zi, + 7- ' P~ = 0 (40) 

? , + ( 7 -  1)ff~ = 0 (41) 

+ 7~+ ~ ~r V = /5 (42) 

if/, = 0 (43) 

w i th  in i t ia l  cond i t i ons  

t i = 5 , = 0 ,  I ~ = 0  at t = O  (44) 

and boundary conditions : 

a l  A" = ! )  

fi = Ixx t, 

and at x = 1 

I ~ = 0 ,  T =  l + e H ' ( 0 ) t + o ( e ) ;  (45) 

= O, ff'~ = 7=~ = 0. (46) 

The solution for ti(_-, t) is given by 

if,, = f f~  (47)  

and initial and boundary conditions (44)-(46). The 
Laplace transform technique leads to 

,i(x,t) = ~ : (1 -x )x / t -~ :  x/2 L 
1 

rr ~=, ~ sin (nxx) 

x [cos ~ . C , ( { . ) - s i n  {.$2(.{.)] (48) 

where .-'. = nrtt and obviously to 

~(x, t) = i~,'t3 2--~: - - - C O S  (nr~x) 
~" n I / / 3 . 2  

x [C_. (~.) sin ~ . - S 2 ( ~ . ) c o s  ~.] (49) 

T(x, t) = ( 7 -  1) ~ t  ~ -~ 

~,/2 .5. l 
-- (7 -- l)x - -  ~ ~ cos (nxx) 

7"~ n = l  n ' 

x [ C z ( ¢ . ) s i n ( ~ . ) - S , ( ~ . ) c o s ¢ . ]  (50) 

r ( x , , )  = v '2  l = . = ,  ~ cos (nxx) 

x [C2(~0sin ~ . - S 2 ( ~ . ) c o s  ~.]}. (51) 

Here C: and S,  represent the Fresnel integrals. 
Solutions (48)-(51) represent the isentropic propa- 
gation of an initial disturbance. It must be emphasized 

(34) that solution (50) for r does not satisfy boundary 
conditions (45) at x = 0.1. This means that an adap- 

(35) ration layer exists near x = 0.1. and might be solved 
(36) to reach a higher order approximation. On the other 

hand, solution (48) for u gives an increase without 
(37) limit with time as t --+ :e which means that for longer 
(38) times this solution is no longer valid and that a mul- 

tiple scale expansion technique must be used to reach 
the evolution on the long diffusion time scale. 

2.4. Description on the Long Diffusion Time Scale 
To reach the evolution on the diffusion time scale 

one must obtain the matching of the variable for t --+ 
0 C .  

One finds that in the limit e ~ 0. for x fixed and 
at<< 1 

u = a K ( l , x ) ,  a + O ( r )  

{ x"2 V G~(x't)+O(':r)t+OIc') (52) 
+e?: - ~  x .~l 

p = 1 +itcz" : + O ( a : )  

+g~2{  -~" \'/2 ~-Tz . . ,  G~(x, t)+O(x/r)t+O,~.:) (53) 

P =  I + ~ 7 K z ' z + O ( r  z) 

f / 3 *- 

+g3"-"~ - x ' - 7  ~ G.(x,t)+O(x/r)f+O{e.:) (54) 
{ 7~ n = l  

T =  1 + ~(7-  1)~r 3 2+O(z-') 

{ ', / 9  

+c 3~-' --K~(-;-1) ~ O,,(x,t)+O(,/3t -~0(~1. 
n =  I 

(55) 
Expansions (52)-(55) show that the O(e 3 :) acoustic 
phenomena occurring on the t scale will continue to 
act on the 0 ( l )  conduction controlled evolution 
occurring on the r scale, and that the appropriate 
expansions are 

p = p d ( r . x ) + g 3 2 p a ( r , t , x ) + O ( c :  ) 

P = Pd(a,x) +e3;"P~(a, t,x) +O(c : )  

T= T d ( a , x ) - F g . 3 ' 2 T a ( ' r , t , x ) + O ( e  : ) 

u = ud(r, x) + e3~2u~ (r, t, x) + O(U) 

W-~-- W d ( T , X ) - ~ O ( F . ) .  

Substituting these expansions into equations 
(1)-(4), the Navier-Stokes equations split into two 
systems. First the system giving the evolution on the 

scale 

P~ + (pdud).~ = 0 (56) 

Pj =Pd=dTd; Pd--  Pd(r) (57) 
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Pd 

7 - 1  

1 
W~, + ud Wax - 

Pr Le 

with boundary conditions 

T =  H(z),  u = - -  
P r L e ( w ? T )  

- -  (T~,+uaTd~) = --Pdud_~+ -----7 Pr-1 T,t~.. 
7 - 1  

- -  W ~  

- - - I ) '  

W =  We(T)  at 

T , = 0 ,  u = 0 ,  W x = 0  at x = l  

and initial conditions 

P d = p d = T d = l ,  U a = 0  at z = 0  

and the acoustic problem which is 

p., + (p~ua)x = 0 

Pa.~ 
p d U a t  = - - -  

7 

pa( T~, + uaT, x) = - ( 7 -  1)Pau~ 

W~,=O 

with boundary conditions 

T , = u ~ = 0  at x = 0 , 1  

and initial conditions 

until convergence is reached, that is to say the full 
(58) unsteady equations are solved at time step (n+ 1). 

The principle of the PISO algorithm already 
(59) exposed in ref. [4] is briefly reported here. 

x = O  

(60) 

(61) 

(62) 

u~ = 2~ .~, n - ~  sin (2nnx) ; 

P~ T~ K 
-- _-- ~ n -  3, z cos (2rmx). (63) 

P" 7 ?--  1 2rc,~ i 

Equation (57) shows that the pressure is homo- 
geneous on the diffusive scale : the acoustic wave has 
enough time to smooth out the pressure disturbance. 

These two systems show that even on the long time 
scale compressibility effects should be taken into 
account. 

3.1.1. Pr&ciple o f  the PISO algorithm 
For each equation, one implicit predictor step is 

followed by n explicit corrector steps to take into 
account the variations of the other variables from one 
time step to another time step. 

3.1.1.1. Momentum predictor step. This step consists 
of solving the implicit discretized equation 

at-' Ao'~ . , p " . i  
- 7 j R  u, = I - I ( . t ) - v , P " -  (64) 

6t 

which gives the provisional value u*. 
3.1.1.2. First momentum corrector step. The momen- 

tum equation is first written in the following form : 

Ao~ , ** p"ul 6 t - ' - ~ - ) p  u, = H ( u * ) - V , P * +  (65) 
-3T  

Subtracting equation (64) from equation (65) gives 

( p * u * * - - p " u * = - -  6t - I -  V , ( P * - P " )  

= - ( f i t - ' -  A0~-tV,~. (66) 
7/  

If now the continuity equation is written as 

V, (p* u* *) = fit- ~ (p* - p") (67) 

taking the divergence of equation (66) and invoking 
equation (67) as well as the state equation written in 
the form 

p* = P*~b(W", T " )  

a Helmholtz equation is obtained for the pressure 
increment 

3. THE NUMERICAL  SOLUTION 

3. i. Principle o f  the Method 
The numerical method is based on a splitting tech- 

nique and is called PISO for pressure implicit with 
splitting of operators [4]. The problem to solve is 
equations (1)-(4) with boundary conditions (5)-(8) 
and initial condition (8'). 

The method consists first of solving equation (4) 
with an implicit O(h'-) scheme, the other variables 
being fixed at the values they had at the previous time 
step n. Then, given W "+ t. t (u ~. t, p,) the velocity at time 
(n+ 1) is computed from condition (7) for u. Given that 
condition for u and condition (5) for T, the Navier-  
Stokes equations are solved by the PISO technique 
and the solution used to reach the updated value 

W.+ t./+ l(u.+ ij, p.+ t . . -z )  

= V , ( p " u * )  (68 )  

and the boundary conditions are deduced from equa- 
tion (66) written on the boundary point of  a staggered 
grid for which the pressure and density are computed 
on external points and the other variables in inner 
points. This boundary condition is of the Robin type 

v,,..,P = u I , ;?~I  :P ,  : 

where 1/2 identifies the boundary grid point. Equation 
(68) together with boundary conditions (70) give the 
first momentum corrector step, say u** and P*. 

3.1.1.3. Energy predictor step. This implicit step 
solves the equation 
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0 . 3 0 0  

12 

10 

inner 

~/~ num. 

t :0.4 

| 

2 4 8 Z 
FIG. 2. Velocity in the initial boundary layer. 
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FXG. 3. Velocity in the boundary layer at various acoustic 
times. 

fit- 1 Bo'~ , • - ~ ) t ,  e* = C ~ c * ) - v , ( v * . * * )  

+ J(u**) + p"¢ 
fit " 

After e* has been obtained explicit momentum and 
energy corrector steps are performed until conver- 
gence. The precision of  the method is O(rt ')  where n 
is the number of  corrector steps. 

3.2. Elements o f  Validation o f  the Method 
Comparison of  numerical solution with asymptotic 

results is made in the case defined by boundary con- 
ditions (5)-(7), that is to say when the heat is added 
on the long diffusive time scale. The computat ion is 
performed for the following values of  the physical 
parameters : 

H ' ( 0 ) = G ' ( I ) =  1, W 0 = 0 . 7 ,  

e = 4 . 7 7 x 1 0  -7, P r = 0 . 7 6 ,  P r L e =  1, 

y =  1.4, ~ =  1 ( M A = M a ) .  

The numerical parameters are 

A x = 3 . 3 3 x 1 0  -4 , A t =  10-2. 

The corrector steps are stopped when Au/u, AT~T, 
AP/P are smaller than 10- 2 and when A IV/W < 1 O- s. 

The computations are performed on a C Y B E R  990. 
The results for the velocity in the initial boundary 
layer are plotted on Fig. 2 as a function of  the inner 
variable Z and for t = 0.4. 

The comparison with the results for u computed 
from equation (31) evidence a 2% difference coming 
most probably from a loss of  accuracy in the dis- 
cretization of  the concentration gradient when com- 
puting the boundary value for u from equat ion (7). 
The increase in velocity from its value at the wall due 

Ox610 -2 
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FIG. 4. Velocity in the core flow at various acoustic times. 

to the phase change and its asymptotic value when 
z--, oo comes from the expansion of  the boundary 
layer adjacent to the wall under heating. It must be 
pointed out that the solutal effects are not taken into 
account since c~ = 1. This behaviour could be different 
for other mass ratios of  the diffusing species. 

3.3. Solution for Typical Heating Law 
It is supposed that the relative increase in tem- 

perature is 10 -2, linearly, in I0 -z s, for t ~< 30 

eli'(O) = 3.33 × 10 4 

in equations (5) and (6). Then, for t > 0, the tem- 
perature is constant. The parameters which differ 
form the set given in Section 3.2 are MB = 23L, and 
Pr Le = 1.52. 

3.3.1. Solution on the acoustic scale 
3.3.1.1. Boundary layer solution. The velocity is plot- 

ted in Fig. 3 as a function of  the inner variable z for 
0 < t < I with a 0.1 time step. 



1846 B. ZAPPOLI and D. BAILLY 

P , 1 0  - 4  

6 ! 

2 

i 

.2 .4 X 
FIG. 5. Pressure in the core flow at various acoustic times. 
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FIG. 6. Velocity in the core flow on the diffusion time scale. 
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The non-linear increase of the velocity at the inter- 
face must be pointed out and is due to the increase in 
equilibrium weight fraction. 

3.3.1.2. Coref low solution. The velocity and pres- 
sure are plotted on Figs. 4 and 5 as a function of the 
outer variable x with a 0.1 time step. The propagation 
of the pressure wave at nearly sound velocity is shown. 
The pressure gradient is negative at x = 0 due to the 
mass flux and is zero at x = 1 because of the imper- 
meability conditions. 

3.3.2. Solution on the diffusive scale 
The velocity and pressure in the core flow for 

t = 37900 are plotted on Figs. 6 and 7. The strong 
decrease of the velocity under stationary boundary 
conditions indicate that the new equilibrium is nearly 
reached. The plot of  temperature and density would 
evidence quasi constant  functions. The pressure is 
rigorously constant  as predicted in Section 2.4, equa- 
tion (58). 

4. CONCLUSION 

The present work has shown the efficiency of the 
PISO algorithm to solve low Mach number  com- 
pressible flow. The comparison with asymptotic 
results gives a good agreement with analytical pre- 
dictions. On a physical point of  view the mechanisms 
of crystal sublimation have been analysed on both the 
acoustic and diffusive time scale. The analysis on the 
acoustic scale shows that the velocity in the initial, 
species and thermal, boundary layer is the result of  
two contributions : first the phase change which gives 
a non-zero velocity at the wall and then the expansion 
of the layer under thermal and solutal solicitations. 
On that short time scale there is no diffusion in acous- 
tical isentropic bulk flow. Nevertheless this first appli- 
cation to the transient between two states of ther- 
modynamic equilibrium between a crystal and its 
vapour has been chosen as an academic example. New 
applications of both asymptotic and numerical analy- 
sis are currently performed to study the influence of 
g-jitter or thermal disturbances on the transfer in the 
bulk and at the interface during crystal growth from 
the vapour phase. 
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FIG. 7. Pressure in the core flow on the diffusive time scale. 
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Response of a solid-gas growth interface to an increase in temperature l~4  

RESPONSE D ' U N E  I N T E R F A C E  DE CROISSANCE SOLIDE~.3AZ A UNE 
A U G M E N T A T I O N  DE T E M P E R A T U R E  

Rbsum,~--La croissance cristalline fi partir d 'une phase vapeur et en ambiance de gravit6 r4duite est 
6tudi~e ~i l'aide d 'un  probl6me--moddle  mono-dimensionnel.  Ce probl6me consiste fi r6soudre fi l'aide de 
l 'algorithme PISO les dquations de transport  relative :i une espdce qui r6a~t  ~. une interface pour explorer 
les transitoires entre deux &ats d'hquilibre d 'un  cristal avec sa vapeur fi deux temp4ratures diffhrentes. Les 
4quations du probl6me sont r6solues par une m6thode de dhveloppement asymptotiques raccordds, puis 
la comparaison avec les r~sultats num6riques concernant l 'hvolution sur l'4chelle de temps acoustique 

constitue une bonne validation de la solution num4rique et des lois d'6chelle. 

V E R H A L T E N  EINER W A C H S E N D E N  PHASENGRENZFL,hkCHE ZWISCHEN FESTEM 
U N D  G A S F O R M I G E M  Z U S T A N D  BEI STEIGENDER T E M P E R A T U R  

Zusammenfassung- -Das  instation~re Kristallwachstum aus der Dampfphase  heraus wird mit einem ein- 
dimensionalen Modell ftir die Bedingungen der Mikrogravitation nachgebildet. Die Gleichungen f~r 
Kont inuMt .  lmpuls-, Energie- und Stofftransport werden mit dem PISO-Algorithmus gelast. Dabei ~ird 
eine Reaktion an der Grenzfliiche berficksichtigt, die sich beim 0bergang z,Mschen zwei Gleichgewichts- 
zustfinden des Kristalls und seiner dampff6rmigen Umgebung infolge einer Temperaturfinderung 
ergibt. Zusiitzlich werden die grundlegenden Gleichungen mit Hilfe des Verfabrens der angepaBten as~mp- 
totischen Entwicklung gel6st. Ein Vergleich mit den numerischen Ergebnissen aus dem ersten Teil dcr 

Untersuchung ftihrt zu einer guten Validierung des numerischen Verfahrens und der Skalierungsgesetze 

BSIIdfIHHE YBE.;IHqEHId,q T E M H E P A T Y P b l  HA POCT F P A H I d ~ b l  PA3,~EJIA T B E P ~ O E  
TE.rIO-FA3 

AmmoTaR~u---C Hcno.qb3OBaHHeM ORlioMepHofi MoneJIH HCC.~CIIyeTC~I Hec'ratmouapH~fi npouecc pocTa 
xpucTaJtna H3 napoo6pa3Ho~ dpa3~ B yCJIOBH#IX MHKpoFpaBHTaIIHH. ~[aHHaa MO~[eJII~ sr, yuosaeT ~McaeH- 
HOC pcmcaHe ypaBHcaHfi Mcpaap~BHOCrH, HMIIyYII,ca, 3HcprHH ~ nepeHoca Bemcc'rsa, pcarupytoLuero y 
Mexdpa3HOg rpaHHu~, c uen~m HCcJIe]IOBaHH~I nepexo~ioro nDouccca Mexc./ly llByM~[ COCTO~IHH$IMH paB- 
HOl~gCI4$1 xpHcrazma a napa npx ~ayx pa3nl~qnmx zcMnepaTypax, Ypaanetms pcmanucb Taz~e Me-ro2oM 
cpam~Baxea aC~MIlTOTHqgC:XI4X pa.anoxcexMg. CpaBHeH~e c 'mcneeH,-,.',,m pc3ynt, TaTaMH qaCTX I, pacc- 
MaTp~Ba~ome~ 3eo.mou/41o npouecca s axyC=rHqeCKOM ~peMe~m, nO.aT~epm.~o np~MeHeMOC'rb r~pe.J...~o- 

~ee~oro  , ~ c n e . ~ o r o  Me"ro/xa ~ 3a~o~o~, no.ao6~a. 


