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Abstract— Transient crystal growth from a vapour phase in micro-gravity conditions is studied through a

one-dimensional model problem. This model consists of solving by means of the PISO algorithm the full

continuity, momentum, energy and transport equation of the specie which reacts at the interface in order

to explore the transient between two states of equilibrium of a crystal with its vapour at two different

temperatures. Solution of the governing equations is also obtained using a matched asymptotic expansion

technique and comparison with the numerical results of Part I concerning the evolution on the acoustic
time is a good validation of the numerical method and scaling laws.

1. INTRODUCTION

DuE 10O the strong decrease of buoyant convection,
second-order forces may drive significant fluid flows
in micro-gravity conditions. In liquids, the Marangoni
effect which has its origin in the interface force caused
by a surface tension gradient is a well-known example
of second-order motion which has been extensively
studied. In gases, the compressibility may generate
motion even in the absence of buoyant forces. It is
well known, for example, that when heat is added to
the wall of a closed vessel, a motion is generated in
the fluid in the form of acoustic waves, and depending
on the time rate and the amount of heat addition you
can even generate shock waves [1,2].

The physical problem under study is the following:
a crystal, located on the wall of a one-dimensional
slot filled with a binary perfect gas mixture is in equi-
librium with this mixture one component of which is
the gaseous phase of the crystal. The system is in quasi
zero-gravity conditions. For ¢ = 0 the crystal is heated
until it reaches a new temperature ; as the slot is closed
and insulated, a new thermodynamic equilibrium is
reached and the aim of this paper is to explore the
transient between these two equilibria.

In the first part, a slow heating law is considered,
that is to say the temperature of the crystal is raised
on the long diffusive time scale. The solution of the
Navier—Stokes equations is looked for under the form
of an asymptotic expansion written for the short
acoustic time scale. In a similar way as in ref. [3], the
matched asymptotic expansion technique is used to
match the initial boundary layer with the core flow.
Then the multiple scale expansion technique is used
to obtain the equations which describe the evolution
on the long diffusive time scale.

The second part is the numerical solution of the
problem by the PISO algorithm [4]. After the principle

of the method is given, solution for the same boundary
conditions as in Part [ is obtained for compuirison of
the results. A typical evolution is then computed on
both acoustic and diffusive time scales in the boundary
layer and core flow.

2. THE ASYMPTOTIC ANALYSIS

2.1. The Physical Situation

The physical problem concerns a confined, two-
component perfect gas mixture contained in a one-
dimensional slot of width L situated in micro-gravity
conditions. At the end located at x = 0 a crvstal is at
the thermodynamic equilibrium at the initial tem-
perature and pressure T, and P, The other end,
x =1, is closed and insulated. For 1 =0 the tem-
perature at x = 0 is raised on a long time scale until
it reaches a new temperature ; after a transient, a new
equilibrium of the crystal with its vapour is reached
for which the thermodynamic properties are constant
and the fluid is at rest. This problem is an extension
of the one studied in ref. [3] for which there is no
growth interface.

2.2. The Governing Equations

The governing equations are the Navier-Stokes
equations coupled with the diffusion equation of the
specie which reacts at the interface at x = 0. If the
length x’, velocity «” and time are respectively reported
to the length L of the medium, the sound velocity
and the acoustic time ¢, = L/C{ while the temperature
77, the pressure P’ and the specific mass are nor-
malized with respect to their initial values. the govern-
ing equations can be written as follows :

continuity

pit(pu)e =0; ()
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NOMENCLATURE
Co,  sound velocity in the initial reference Greek symbols
state 2" molar mass of the mixture
D diffusion coefficient ] boundary layer thickness
L width of the slot L) small parameter
Le Lewis number K thermal diffusivity
M,  molar mass of specie x P specific mass of the bulk gaseous phase
P pressure Po initial value of the specific mass
Pr Prandtl number Pa equilibrium value of the partial specific
L acoustic characteristic time mass of A at the interface
) diffusive characteristic time T time normalized with respect to the
t time normalized with respect to the diffusive characteristic time.
acoustic characteristic time
T temperature
T reference initial temperature Superscripts and subscripts
w weight fraction for specie A () dimensional variable
W,  initial value for the weight fraction of A ()  outer variable
space variable ™) inner variable
inner space variable. ( s property related to specie A
momentum occurs on the long diffusive scale. Typically, for air at
pu 4 putt, = —y~ P+ deu,, ; ) STP and L =0.1 m the following numerical values
hold:
energy

£ (T, 4uT) = = Pu,
y—1

+6{7—_y—7 pro! T_“+%7(ux)2}; ©)

species

& p, e

W, - Fx = W
o+ (" PrLe p)W" Prie” @
where W is the weight fraction and the pressure is

given by
P = paT

where
¥ Mg—M,
X =— —_—

MM, My

M, and My are respectively the molar masses of the
reacting component at the interface and that of the
inert one B. ¢ is the ratio Prt./t) of the acoustic

time ¢, to the diffusion time ¢t = L%/x where « is the
thermal diffusivity. y is the ratio of specific heats.

x = W+ =k, W+k,.

2.2.1. Boundary conditions
2.2.1.1. Boundary conditions at x = 0.

T=H(x) = H(et) = | + H'(0)et+ 0(?)  (5)

where 7 is the time normalized with respect to the
diffusion time

T=¢l

Equation (5) means that the heating of the crystal

t;=3x10"%s; Co=3x100ms™';

t; =6.29%x10%s.

Now, if the phase change reaction which takes place
at x = 0 is supposed to be extremely rapid compared
to diffusion in the bulk, then the mass transfer at the
interface is diffusion limited and the weight fraction
at this interface is thus fixed to its equilibrium value
(5]
W= WD) at x=0
P

where W4 (T) is the equilibrium weight fraction when
the partial specific mass of A is reported to the initial
specific mass pj.

Taking into account equation (5), the equilibrium
weight fraction at the interface may be expanded as

pa =p(T) or

pW = Wo+eG (1)H’ (0)t+ O(e?) (6)
where
, oW
G'(1)= 3T .

and the boundary condition for the velocity at x = 0
is deduced from the mass balance [5]
€ W,
U=
PrlLe W 1
p

at x=0. (7

2.2.1.2. Boundary conditions at x = 1. The slot is
closed at x = 1 and insulated, so that
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F1G. 1. Asymptotic analysis on the acoustic time scale.

u=0; T,=0 W,=0. (8)
2.2.1.3. Initial conditions.
p=T=P=1, u=0. W=W, at 1=0.
(8)

2.3, Asymptotic Solution on the Acoustic Time Scale
The main scaling and domain defined in this analy-
sis are summarized on Fig. 1.

2.3.1. Initial boundary layer solution (inner solution)

2.3.1.1. The solution. From equation (4) and bound-
ary conditions (5) it is clear that the asymptotic expan-
sion

T=1+eT(x,1)+o0(e)

is not regular in the neighbourhood of x =0 and
that ¢ is a singular perturbation parameter for x = 0.
According to the matched asymptotic expansion tech-
nique, an inner variable defined by
3e) -0 as ¢—0 (9)
must be introduced and the solution seeked under the

form of another asymptotic expansion called the inner
expansion and constructed for the function

Tz, 1) = T(z, 1)
that is to say

T=1+eT(z. 1) +0(e). (10)

The function J(e) 1s given by the least degeneracy
principle which matches the transient and diffusion
terms in equation (4) written for the function 7(z,¢)
and for the inner variable . This gives obviously

3(e) = (1D

Physically this means that the heat diffusion has no
time to occur on the short acoustic time scale except
in a very thin layer of thickness ¢ just in front of the
heated crystal. In the same way a species diffusion
boundary layer is formed.

The scaling for the other variables in this layer, that
is to say the definition of the compatible asymptotic
sequence for the inner expansion, is given by matching
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the linear terms [3] in each equation when p. P and u
are expanded as

p=l+ep+o(s") (12)
P=1+¢P+o(e") (13)
u = e’ii+o(*) (14)

which gives
x=1; f=13 and n=2 (15)

Considering equation (6) the scaling for ¥ in the
boundary layer is

W= W,+eW(z.1)+ole). (16)

Substituting equations (16) and (11) in boundary con-
dition (7) for u gives

=0,1) = 0@E>7)

which means that the mass transport is of the same
order as the thermal effects in the compressible bound-
ary layer.

Substituting equations (10)-(16) for T. x. p, P
and W in equations (1)—(4) the following governing
equations are obtained for the first-order approxi-
mation in the boundary layer:

p.+ia.=0 (17
i T= M o e s
k W0+k
= —(y—Dia.+yPr-' T (19)
g, = —y ‘P, + 1, {20)
= (PrLle)” ' W, (21)
with boundary conditions at z = 0
T=H©O) (22)
W =G (H (0)t—Wop (23)
1 W,
U B le Wo-1 (24
and matching conditions for = — =
T-0 (25)
W 0. (26)
The corresponding initial conditions are
p=P=T=a=0, w=0 at 1=0. (27)

The solution of equations (17)—(21) together with
conditions (22)-(28) is expressed by

- ’(Pr Le)
3

,'.\’

W(z, 1) = dfri? erfc( (28)

where

HO)(1+EG7(1
¥ =G (HH’ (0)—”0—()—(”/0 1 A ))
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- i (:J(Pr)) .
T(z,t) = C\Ti*erfc| ——= |+ C1W(z,1).
2/t
(29)
Here
ki
é=k,W°+k2
Ci=——Zle ¢, = a0 -4c)]
Le—1 vy

~ . Z\/( r))

2 ) = — 2 =/(Pr)

plz, t) C,ti erfc( 2t
(C /I C) lT (:s [) (30)
1

r \

o Co [ e, <z\/(Pr))J
iz, 1) \/t{Z\/(Pr) [n ierfc 20

n

2149 [
J(Le Pr)

A

~

ocfec (z\/(Le Pr))]
2/t

11

2y ‘
 Jr(Wo—1)/(Le Pr)} @D

P(z,t) = P(1) +V{—————(4f2r;r3) [C , erfc (————2\2/\(/1?)>

€, +9 2/(Pr Le))]
+ 3 erfc ( 5 \/t

__z (G (€i+)  J(PrLe )}
V() <4P"\/(PrLe)w Wo—1 v 32)

in which P, (¢) could be determined by a higher order
approximation.

2.3.1.2. The physics. In equation (31), which gives
the velocity in the boundary layer, the following terms
can be identified :

Is

term I represents the thermal expansion due to
boundary heating;

term II represents the solutal expansion or con-
traction (depending on &, that is to say on the molar
mass difference) ;

term Il represents the mass flux at x = 0 due to the
heterogeneous reaction.

At the edge of the boundary layer, the velocity i is

o C, 2(Ci+9)

= ] =

4= Jim iz (N(nPr) v Le Pr)
24

- t. (33
Jin Le Pr)(Wo—1)>‘/ G

The piston effect, already mentioned in ref. [3] is
found again. The first term in equation (33) is the
contribution of the thermal expansion, the second
term is the contribution of the solutal expansion and
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the third term is the mass transfer at the wall. The
boundary layer thickness increases as the square root
of time.

In boundary condition (23) for the weight fraction
W(z,t) at z =0, the first term represents the con-
tribution of the increase in equilibrium partial specific
mass p, due to the increase in crystal temperature
while the second term represents the contribution of
the total specific mass. In other words, the first term
only depends on thermodynamics (through the crystal
temperature) and the second term depends on
dynamical effects; this last term is the expression of
the coupling between mechanical stresses and crystal
growth, that is, possible mass transfer at the interface
without any temperature variations at the surface.

As a matter of fact, the interface velocity given by
boundary condition (7) for » and solution (28) for
W(z,t) is given as

i1 112

(—J\——ﬁ e
H'(0) [1+¢G6°()
40, 1) = {Z[G’(I)H’(O)_WO ( )U[Votcl ( )I}

Vi

% J@Le Pry(1—W,)

Term I is the contribution of the temperature depen-
dent equilibrium partial specific mass p§ at the inter-
face. Term II is the contribution of the total specific
mass gradient at the interface p, which undergoes
variations under thermal (II-1) and solutal effects (II-
2). Expression (34) for i also points out that under
linear increase of the interface temperature, the
growth (or etching) varies as the square root of time.

2.3.2. The core solution (outer solution)

Expression (33) for the velocity at the edge of the
initial boundary layer and the matching rule shows
that

. . ~ 32
= = K
limu(x, 1) = limi(z, 1) = &kt

which means that a mechanical perturbation of the
order of magnitude O(¢*?) acts on the bulk. On the
other hand, taking form (32) lim,_, P(z,1), it
becomes

lim Pz, 1) = — 7 ( C, (C1+9)

= J@) \&/(Pr) " J(Pr Le)

'1, e P e o= 1127
_\/(PrLe)(W0—1)>Z—KZ—£ e

and
lim P(z,1) = 1+e” "' x+ 0(e)
matching conditions lead to
lim P(x, 1) = 11,’2 P(z,t) = 1+&¥2k’x+O(e)

which means that the appropriate asymptotic expan-
sions for the outer solution are
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T(x.t) = L4+&>*T(x, 1) +0(c¥?) (34)
plx,£) = 1+V25(x, ) +o(e¥?) (3%)
Plx.t) = 1 +&>2P(x. 1)+ 0(c¥?) (36)
W(e o) = 1+ 2 ) +oE?)  (37)

ulx, 1) = & *i(x, 1) +o0(e*?). (38)

Substituting equations (34)~(38) in equations (1)—~(4),
the following governing equations are obtained for
the outer solution of O(¢¥?):

p.+u. =0 (39)
i+ 'P. =0 (40)
T +(G-Dia, =0 (4h
j+T+EW =P (42)
W,=0 (43)
with initial conditions
i=u,=0, W=0 at 1=0 (44)
and boundary conditions :
atx =1
d=rKt. W=0, T=I1+eH 0)+0(s); (45)
and at x =1
=0, W, =T =0. (46)
The solution for (=, 1) is given by
4, = i, @7

and initial and boundary conditions (44)—(46). The
Laplace transform technique leads to

’) s
a(x, 1) = x(1 —-x)\/t-—;c \/—ﬂ: Z n—;—isin (nmx)

n=1

x{cos §,C1(&,) —sin £, S,(S,)]  (48)
where ¢, = nnt and obviously to
hox
plx 1) = nt¥?—x V—T;"; 53 cos (nmx)
x[C2(E)sin §, = S5(E) cos &,] (49)
ety = (= Diwr'?
—(y—Dx 3—2 i ——}—f cos (nmx)
T on
x[C2(E)sin(S,) = Sx(E,) cos ] (50)
P(x.t) = }'{%M” —K 3/7;—2 \Z n:'z cos (nmx)
o

x [C1(&,) sin &, —§2(E,) cos én]}' (51

Here C, and S, represent the Fresnel integrals.
Solutions (48)—(51) represent the isentropic propa-
gation of an initial disturbance. It must be emphasized
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that solution (50) for T does not satisty boundary
conditions (43) at x = 0.1. This means that an adap-
tation layer exists near x = 0.1, and might be solved
to reach a higher order approximation. On the other
hand, solution (48) for u gives an increase without
limit with time as t — 20 which means that for longer
times this solution is no longer valid and that a mul-
tiple scale expansion technique must be used to reach
the evolution on the long diffusion time scale.

2.4. Description on the Long Diffusion Time Scale

To reach the evolution on the diffusion time scale
one must obtain the matching of the variable for 7 —
«©.
One finds that in the limit ¢ — 0, for x fixed and
e« 1

u=ex(l.x) o+ 0(1)

1o

1Py

+£3:{—K\;_ ) G,,(x,t)—%—O(\f'f)}-{»OlE:) (32)
¢ 1

n

p=1+4:it" " +0(c)

-
+g“{~t\'in~— Y Gn(x,t)+0(\/'t)}+0<53‘) (53)
1

n—

P= 143k’ +0(1?)

(RS ]

)
FIPSTED B
p

Z G.(x, 1) +O(\"'r)}+ Oy (54)
=1

n

T=1430r~Drt* 401

i x ] R
+e3'2{—xln— =1 Y Glx,D+0(/3 :*40('3*).

n=1

(55)

Expansions (52)—(55) show that the O(¢*~) acoustic
phenomena occurring on the ¢ scale will continue to
act on the O(l) conduction controlled evolution
occurring on the t scale, and that the appropriate
expansions are

p = pa(t.X)+e¥p (1.1, X)+ O(")

P = Pya,x)+&"P,(0,t,x)+0(c")

T=Ty(0,xX)+&¥T,(1,1,x) + O(")

u=u(t.x)+e¥u,(r, 6. x)+0(c")
W= Wy(t,x)+ O().

Substituting these expansions into equations
(1)-(4), the Navier-Stokes equations split into two
systems. First the system giving the evolution on the
T scale

Pa: + (patig)e =0 (36)

Py =pg2sTy; Py= Py(7) (57)
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P 7 —1
?Tl (Tdr+ud de) = "Pdu¢r+ :/’_-i Pr Td.rx (58)
1
Wa+uWy, = _Pr Le Wi (59)
with boundary conditions
€ W
T =H ’ = - s
(T) u Prle (WE(T) l)
0
W=W%T) at x=0
T.,=0, u=0, W,=0 at x=1
and initial conditions
Pi=p;=Ty=1, uy=0 at t=0
and the acoustic problem which is
Pa + (.pdua)x = 0 (60)
PZI\'
Pally, = — «‘ (61)
7
pd(le +iy Ta.\') == (y - I)Pd“u.v (62)
Wu=0
with boundary conditions
T,=u,=0 at x=0,1
and initial conditions
kZ 1 |
U, = — E"; 3 Sin (2rnx);
P, T, K & 32
Pa= V=T 2n"§l n~**cos 2nnx). (63)

Equation (57) shows that the pressure is homo-
geneous on the diffusive scale: the acoustic wave has
enough time to smooth out the pressure disturbance.

These two systems show that even on the long time
scale compressibility effects should be taken into
account.

3. THE NUMERICAL SOLUTION

3.1. Principle of the Method

The numerical method is based on a splitting tech-
nique and is called PISO for pressure implicit with
splitting of operators [4]. The problem to solve is
equations (1)-(4) with boundary conditions (5)-(8)
and initial condition (8°).

The method consists first of solving equation (4)
with an implicii O(4?) scheme, the other variables
being fixed at the values they had at the previous time
step n. Then, given W+ ! (!, p") the velocity at time
(n+ 1) is computed from condition (7) for u. Given that
condition for u and condition (5) for 7, the Navier—
Stokes equations are solved by the PISO technique
and the solution used to reach the updated value

Wn+ Li+ l(l/”' IJ’ pn+ L+ l)

B. ZappoLl and D. BaiLLy

until convergence is reached, that is to say the full
unsteady equations are solved at time step (n41).

The principle of the PISO algorithm already
exposed in ref. [4] is briefly reported here.

3.1.1. Principle of the PISO algorithm

For each equation, one implicit predictor step is
followed by n explicit corrector steps to take into
account the variations of the other variables from one
time step to another time step.

3.1.1.1. Momentum predictor step. This step consists
of solving the implicit discretized equatiion

mn..n

A pu;
—l__o LI *y_ n___ ’
(6! p,,)p u* = H(ur)—-V,P 5

(64)

which gives the provisional value u*.
3.1.1.2. First momentum corrector step. The momen-
tum equation is first written in the following form:

(65)

Ao p"u?

St — — Jp*ur* = Hu¥)—-V,P*+ -,

( p">p u; @f)=V.P*+ =

Subtracting equation (64) from equation (65) gives
—1 AO !

prur*—p'ur = —\| 6t —7 V.(P*—-P")

-1 -
=— (5[" f— '—47") v.P.
o

If now the continuity equation is written as

(66)

Vilp*ut*) = 6t~ '(p*—p") (67)
taking the divergence of equation (66) and invoking
equation (67) as well as the state equation written in
the form

p* = P*o(W", T7)

a Helmholtz equation is obtained for the pressure
increment

{ i[<§t—l 0>_] i:l s )} g
p" ot
= V. (p"u?) (68)

and the boundary conditions are deduced from equa-
tion (66) written on the boundary point of a staggered
grid for which the pressure and density are computed
on external points and the other variables in inner
points. This boundary condition is of the Robin type

VuzF: u’:72l¢,;,2}->l 2

where 1/2 identifies the boundary grid point. Equation
(68) together with boundary conditions (70) give the
first momentum corrector step, say «** and P*.

3.1.1.3. Energy predictor step. This implicit step
solves the equation
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U %300
inner
num.
129 t:04
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2 4 8 z

FiG. 2. Velocity in the initial boundary layer.

o1 Bo * % * * koK
ot —;; pre* = Ge*) =V (p*ur*)

n
i

ot

+ I+ L

After e* has been obtained explicit momentum and
energy corrector steps are performed until conver-
gence. The precision of the method is O(6¢") where n
is the number of corrector steps.

3.2. Elements of Validation of the Method

Comparison of numerical solution with asymptotic
results is made in the case defined by boundary con-
ditions (5)—(7), that is to say when the heat is added
on the long diffusive time scale. The computation is
performed for the following values of the physical
parameters:

HO)=6¢1)=1, W,=07,
e=477x10"7, Pr=0.76, Prle=1,
y=14, a=1 (M= M,).
The numerical parameters are
Ax=333x107"%, Ar=10"2

The corrector steps are stopped when Au/u, AT/T,
AP/P are smaller than 10~ 2and when AW/ W < 1078,

The computations are performed on a CYBER 990.
The results for the velocity in the initial boundary
layer are plotted on Fig. 2 as a function of the inner
variable Z and for t = 0.4.

The comparison with the results for ¥ computed
from equation (31) evidence a 2% difference coming
most probably from a loss of accuracy in the dis-
cretization of the concentration gradient when com-
puting the boundary value for u from equation (7).
The increase in velocity from its value at the wall due
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U602
|
t-1
8.
4-/
t-1
24 8 7

Fi1G. 3. Velocity in the boundary layer at various acoustic
times.

0.6 102

—
Fi1G. 4. Velocity in the core flow at various acoustic times.

to the phase change and its asymptotic value when
z — oo comes from the expansion of the boundary
layer adjacent to the wall under heating. It must be
pointed out that the solutal effects are not taken into
account since « = 1. This behaviour could be different
for other mass ratios of the diffusing species.

3.3. Solution for Typical Heating Law
It is supposed that the relative increase in tem-
perature is 1072, linearly, in 107 % s, for ¢ < 30

eH'(0)=333x10"*

in equations (5) and (6). Then, for ¢ > 0, the tem-
perature is constant. The parameters which differ
form the set given in Section 3.2 are My = 2M, and
PrLe=1.52.

3.3.1. Solution on the acoustic scale

3.3.1.1. Boundary layer solution. The velocity is plot-
ted in Fig. 3 as a function of the inner variable - for
0 <t < 1witha0.] time step.
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2 .4 X

F1G. 5. Pressure in the core flow at various acoustic times.

Ux12
] t=37900
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FIG. 6. Velocity in the core flow on the diffusion time scale.

P,25108
81
4
2 6 X

F1G. 7. Pressure in the core flow on the diffusive time scale.
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The non-linear increase of the velocity at the inter-
face must be pointed out and is due to the increase in
equilibrium weight fraction.

3.3.1.2. Core flow solution. The velocity and pres-
sure are plotted on Figs. 4 and 5 as a function of the
outer variable x with a 0.1 time step. The propagation
of the pressure wave at nearly sound velocity is shown.
The pressure gradient is negative at x = 0 due to the
mass flux and is zero at x = 1 because of the imper-
meability conditions.

3.3.2. Solution on the diffusive scale

The velocity and pressure in the core flow for
t = 37900 are plotted on Figs. 6 and 7. The strong
decrease of the velocity under stationary boundary
conditions indicate that the new equilibrium is nearly
reached. The plot of temperature and density would
evidence quasi constant functions. The pressure is
rigorously constant as predicted in Section 2.4, equa-
tion (58).

4. CONCLUSION

The present work has shown the efficiency of the
PISO algorithm to solve low Mach number com-
pressible flow. The comparison with asymptotic
results gives a good agreement with analytical pre-
dictions. On a physical point of view the mechanisms
of crystal sublimation have been analysed on both the
acoustic and diffusive time scale. The analysis on the
acoustic scale shows that the velocity in the initial,
species and thermal, boundary layer is the result of
two contributions : first the phase change which gives
a non-zero velocity at the wall and then the expansion
of the layer under thermal and solutal solicitations.
On that short time scale there is no diffusion in acous-
tical isentropic bulk flow. Nevertheless this first appli-
cation to the transient between two states of ther-
modynamic equilibrium between a crystal and its
vapour has been chosen as an academic example. New
applications of both asymptotic and numerical analy-
sis are currently performed to study the influence of
g-jitter or thermal disturbances on the transfer in the
bulk and at the interface during crystal growth from
the vapour phase.
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Response of a solid-gas growth interface to an increase in temperature

RESPONSE D'UNE INTERFACE DE CROISSANCE SOLIDE-GAZ A UNE
AUGMENTATION DE TEMPERATURE

Résumé—La croissance cristalline a partir d'une phase vapeur et en ambiance de gravité réduite est

étudiee a l'aide d'un probléme—modéle mono-dimensionnel. Ce probléme consiste a résoudre a l'aide de

l'algorithme PISO les équations de transport relative & une espéce qui réagit 4 une interface pour explorer

les transitoires entre deux états d'équilibre d’un cristal avec sa vapeur a deux températures différentes. Les

¢quations du probléme sont résolues par une méthode de développement asymptotiques raccordés, puis

la comparaison avec les résultats numériques concernant I'évolution sur I'échelle de temps acoustique
constitue une bonne validation de la solution numérique et des lois d"échelle.

VERHALTEN EINER WACHSENDEN PHASENGRENZFLACHE ZWISCHEN FESTEM
UND GASFORMIGEM ZUSTAND BEl STEIGENDER TEMPERATUR

Zusammenfassung—Das instationdre Kristallwachstum aus der Dampfphase heraus wird mit einem ein-
dimensionalen Modell fiir die Bedingungen der Mikrogravitation nachgebildet. Die Gleichungen fur
Kontinuitit, Impuls-, Energie- und Stofftransport werden mit dem PISO-Algorithmus geldst. Dabei wird
eine Reaktion an der Grenzfliche beriicksichtigt. die sich beim Ubergang zwischen zwei Gleichgewichts-
zustinden des Kristalls und seiner dampflérmigen Umgebung infolge einer Temperaturdnderung
ergibt. Zusitzlich werden die grundlegenden Gleichungen mit Hilfe des Verfahrens der angepaBten asymp-
totischen Entwicklung geldst. Ein Vergleich mit den numerischen Ergebnissen aus dem ersten Teil der
Untersuchung fithrt zu einer guten Validierung des numerischen Verfahrens und der Skalierungsgesetze

BJIMAHUE YBEITHMUEHWA TEMIIEPATYPbI HA POCT TPAHHLIbI PA3JEJIA TBEPJOE
TEJO-TA3

Amsoraums—C HCNONL30OBAHHEM OMHOMEDHOH MOIEIH HCCIEAYETCS HECTAUMOHAPHBIA mpouece pocTa
KPHCTA/L1a H3 napoobpa3Ho# ¢a3bl B YCIOBHAX MHKpOTpaBHTaLMK. JJaHHas MOJENb BKIIOYAET YHUC ICH-
HOC DELUCHHE YPABHEHHH HEPa3pLIBHOCTH, HMITyJIbCA, 3HEPIHH H MEPEHOCA BEUIECTBA, PEArupyloLLero y
MexdasHoH IrpaHHII, C LeJIbIO HCCIENOBAHHA NEPEXOJHOrO MPOUECCa MeXay IBYMS COCTOSHHAMM paB-
HOBECHA KPHUCTAILUIA Y Napa MPH ABYX Pa3MHYHbIX TEMNEPATYpax. YpaBHEHHS PeLIAMCh TAKKE METOIOM
CPALHBAaHHA ACHMITOTHYECKHX pa3foxeHuit. CpaBHEHHE C YHC/IEHHBIMH pe3yihbTaTaMH 4acTH I, pacc-
MaTpHBaOLIEH 3BOMOIHIO IPOLECCa B aKYCTHYECKOM BpPEMEHH, OATBEPIAHIO NPUMEHHMOCTD [1peL1o-
KEHHOTO YHC/IEHHOTO METOA H 3aKOHOB [OI05HA.
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